
TOWARDS GENERATION OF VISUAL
ATTENTION MAP FOR SOURCE CODE

/* ==

== */

Affiliation_1 = Division of Information Science, Nara Institute of Science and Technology;
Affiliation_2 = Department of Contemporary Society, Kyoto Women's University;
Correspondence = takatomi-k@is.naist.jp;

[1] Uwano et al., ACM Symposium on Eye Tracking Research & Applications, 2006.

[2] Crosby et al., 14th Workshop of the Psychology of Programming Interest Group, 2002.

[3] Alon et al., ACM on Programming Languages, 2019.

[4] Ikutani et al., 6th International Workshop on Eye Movements in Programming, 2019.

This work was originally published in APSIPA ASC 2019 (18-21 Nov, Lanzhou, China).

We would like to thank Dr. Nishanth Koganti and Ms. Louise Bautista for their valuable

advices and comments. This work was supported by JSPS KAKENHI Grant Numbers

JP19J20669, JP18J22957, JP18K18108, JP16H06569, and JP16H05857.

Author Page Project Page

PROSPECTS: PROGRAM COMPREHENSION IN BIOLOGICAL & ARTIFICIAL SYSTEMS

Neural Representation of Expertise
Our fMRI study (in prep.) confirmed that semantic
categories of source code could be decoded from
programmers’ brain.
Several brain regions contribute to the better cate-
gorization performance of expert programmers.
These brain regions might process context and
composition of source code.

Context and Compositionality in Gaze

[Hypothesis]
Each fixation grabs local spatial composition.
A sequence of fixations forms a global context.
Experts can form an accurate global context with
fewer fixation points, and can determine where to
look at in the next fixation.

Gaze focuses, or fixation points, move sequen-
tially on presented source code.

Composition-Aware ML Model
Code2vec decomposes programs into a set of
“paths,” and possibly it cannot capture the com-
position in source code.

We are now developing a new ML algorithm for
program comprehension, that is designed with
considering the hierarchical compositionality in
source code.
By considering compositionality, we expect that...

a) Model performance on program comprehen-
sion task will be improved.
b) The VAM will be much consistent with human
experts’ gaze behavior.
c) The model can be used in a model-based fMRI
decoding study to explain neural representations
in the programmers’ brain.

FIGURE NOT AVAILABLE

PRELIMINARY RESULTS & DISCUSSION

Discussion
The expert’s gaze was more consistent with the VAM than the novice.
The VAM and the expert showed much sparser attention than the novice.
There might be a common importance metric, shared among attentional
ML models and expert human programmers.

Visual attention map (code2vec) Expert gaze distribution (AUC = 0.87) Novice gaze distribution (AUC = 0.77)

Preliminary Results
We conducted ROC analysis between the gaze distributions and the VAM.
The expert showed a higher AUC value than the novice.

We will continue experimenting to quantify the relationship between pro-
grammers’ attention and ML attention mechanisms, with more human
subjects, varying source code snippets, and performance evaluation.

The current result also supported that our VAM method is feasible.
We will test the biological plausibility of other ML models and seek for
common attention representation for program comprehension.

METHODS

Path context

0,GreaterThan↑IfStmt↓ReturnStmt,0

Original code AST

IfStmt

ReturnStmt

arg

ReturnStmt

0

GreaterThan

arg 0

MethodDecl

Parameter

int arg

int f

Attention value

0.19

Attention prediction
by code2vec

convert code to AST extract path contexts path attention

spatial attention ← node attention node attention ← path attention

Path contextOriginal code AST Attention value
Attention map

generation

int f (int arg) {

 if (arg > 0) return arg;

 else return 0;

}

Procedure for generating visual attention map

Visual Attention Map

Preliminary Gaze Experiment
Subjects (1 expert + 1 novice) engaged
an algorithm classification task.
Gaze behavior was recorded with Tobii
Pro TX 300.
Recorded gaze distribution was com-
pared to the visual attention map to
evaluate consistency.

code2vec architecture (from [3]; modified)

+
public class Main {

 public static void main(String[] args) {

 Scanner in = new Scanner(System.in);

 String word = in.next();

 int count = 0;

 word = word.toLowerCase();

 while (true) {

 String str = in.next(); String

(1)

Math

(2)

Sort

(3)

Search

(4)

[]

fixation

source code

answer

time

Experimental procedure

Code2vec [3] learns a distributed repre-
sentation of program functions to dis-
criminate their names.
Attention mechanism quantifies com-
ponents’ importance for discrimination.
The visual attention map is computed
by mapping code2vec’s path attention
into the original source code image.

context
vector

FC layer

code
vector

attention
weights

softmax

prediction

INTRODUCTION

Attention in Program Comprehension
Human programmers focus their gaze on impor-
tant components in the presented source code [1].
Gaze focuses get sparser with higher expertise.
Such attentional gaze behavior might help expert
programmers to capture context and composition
in source code much efficiently.

Objective
Our objective is to develop a gaze analysis frame-
work to compare programmers’ gaze attention to
ML attention mechanism.

Towards modeling the mechanism of human pro-
grammers’ attention, we focus on testing bio-
logical plausibility of ML attention mechanisms.

Expected Results
a) If human gaze and ML attention are consistent:
 → ML model might explain human attention.

Human attention

Comparing biological attention to artificial attention

Original source code

Source code
classification taks

ML attention

Compare
attention

Authors = { Takeshi D. Itoh1, Takatomi Kubo1*, Kiyoka Ikeda1,2, Yuki Maruno2,

 Yoshiharu Ikutani1, Hideaki Hata1, Kenichi Matsumoto1, Kazushi Ikeda1 };

b) If they are inconsistent:
If humans outperform ML, programmers’ attention
strategy can be used to improve ML attention [3].
If ML outperforms humans, ML attention can be
used to guide programmers’ gaze [4].

