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PROSPECTS: PROGRAM COMPREHENSION IN BIOLOGICAL & ARTIFICIAL SYSTEMS

Neural Representation of Expertise
Our fMRI study (in prep.) confirmed that semantic 
categories of source code could be decoded from 
programmers’ brain.
Several brain regions contribute to the better cate-
gorization performance of expert programmers.
These brain regions might process context and 
composition of source code.

Context and Compositionality in Gaze

[Hypothesis]
Each fixation grabs local spatial composition.
A sequence of fixations forms a global context.
Experts can form an accurate global context with 
fewer fixation points, and can determine where to
look at in the next fixation.

Gaze focuses, or fixation points, move sequen-
tially on presented source code.

Composition-Aware ML Model
Code2vec decomposes programs into a set of 
“paths,” and possibly it cannot capture the com-
position in source code.

We are now developing a new ML algorithm for 
program comprehension, that is designed with 
considering the hierarchical compositionality in 
source code.
By considering compositionality, we expect that...

a) Model performance on program comprehen-
sion task will be improved.
b) The VAM will be much consistent with human 
experts’ gaze behavior.
c) The model can be used in a model-based fMRI 
decoding study to explain neural representations 
in the programmers’ brain.
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PRELIMINARY RESULTS & DISCUSSION

Discussion
The expert’s gaze was more consistent with the VAM than the novice.
The VAM and the expert showed much sparser attention than the novice.
There might be a common importance metric, shared among attentional 
ML models and expert human programmers.

Visual attention map (code2vec) Expert gaze distribution (AUC = 0.87) Novice gaze distribution (AUC = 0.77)

Preliminary Results
We conducted ROC analysis between the gaze distributions and the VAM.
The expert showed a higher AUC value than the novice.

We will continue experimenting to quantify the relationship between pro-
grammers’ attention and ML attention mechanisms, with more human 
subjects, varying source code snippets, and performance evaluation.

The current result also supported that our VAM method is feasible.
We will test the biological plausibility of other ML models and seek for 
common attention representation for program comprehension.

METHODS
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int f (int arg) {

  if (arg > 0) return arg;

  else         return 0;

}

Procedure for generating visual attention map

Visual Attention Map

Preliminary Gaze Experiment
Subjects (1 expert + 1 novice) engaged 
an algorithm classification task.
Gaze behavior was recorded with Tobii 
Pro TX 300.
Recorded gaze distribution was com-
pared to the visual attention map to 
evaluate consistency.

code2vec architecture (from [3]; modified)

+
public class Main {

  public static void main(String[] args) {

    Scanner in = new Scanner(System.in);

    String word = in.next();

    int count = 0;

    word = word.toLowerCase();

    while (true) {

      String str = in.next(); String
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Experimental procedure

Code2vec [3] learns a distributed repre-
sentation of program functions to dis-
criminate their names.
Attention mechanism quantifies com-
ponents’ importance for discrimination.
The visual attention map is computed 
by mapping code2vec’s path attention 
into the original source code image.
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INTRODUCTION

Attention in Program Comprehension
Human programmers focus their gaze on impor-
tant components in the presented source code [1].
Gaze focuses get sparser with higher expertise.
Such attentional gaze behavior might help expert 
programmers to capture context and composition 
in source code much efficiently.

Objective
Our objective is to develop a gaze analysis frame-
work to compare programmers’ gaze attention to 
ML attention mechanism.

Towards modeling the mechanism of human pro-
grammers’ attention, we focus on testing bio-
logical plausibility of ML attention mechanisms.

Expected Results
a) If human gaze and ML attention are consistent:
 → ML model might explain human attention. 
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b) If they are inconsistent:
If humans outperform ML, programmers’ attention 
strategy can be used to improve ML attention [3].
If ML outperforms humans, ML attention can be 
used to guide programmers’ gaze [4]. 


